As previously mentioned, a happy member is a numerate member,
and if you aren't happy yet, we aim to make you that way by
helping you understand a complex but fair method for scoring
fighters in competition. First, you deserve an explanation
about why scoring at ZOID CITY Community Competition is so complex.
Scoring at ZOID CITY Community Competition is so
complex because a complex system is the only way to ensure a fair fight.
**A fair fight happens when evenly matched competitors
win due to effort in recruiting votes. A fair fight happens
when more than one or two fighters does well.** A fair
fight does not occur among competitors who are grossly
mismatched, when one fighter's raw vote totals are
so high that others can not possibly catch up,
or when victory results from factors such as choice
of house or team or the good luck of being placed in a weak field.

ZOID CITY Community Competition uses uses perccentile-range scoring to compute scores. This allows us to give the same numerical scores at all levels of turnout, give you as a fighter a precise measure of your performance, and to handicap based on the performance of the entire field. Percentile range scoring, let's you know in percent or hundreths how close your score is to that of the top fighter. Should ZOID grow very large, we may also adopt mean-standard deviation scoring. This is a formula that compares all fighters' scores to the average score for the field rather than the top one. Both methods score fighters based on the performance of the total field of competitors as a whole, rather than on the scores of the first three finishers. Both methods are also well suited to large groups of fighters and larger numbers of ballots. This means that all competition at ZOID CITY is at-large and that there is a single field of fighters.

Neither scoring method requires algebra to learn,**though you
do need all the arithmetic you were ever taught and a feeling
of comfort with mathematics in general** If you are unsure of your
mathematics, print off this page, and have someone who is
good at math help you understand sccoring.

Back to the top of the page.

Back to the ZOID Documentation.

Back to the Main ZOID Page.

There is nothing unspirited or wrong with saying or caring about the question "how well did I do?" It is a question to which you deserve to know the answer in exhaustive and loving detail. Numbers are your friend. A poor performance should be motivation to work harder or a signal to take a time out from fighting. A good performance is a reward even when you don't win.

To understand percentile range fighting, think of the fighters' scores strung out on a rope or scale. At the right or top of the scale is the best scoring fighter. She has a score of 100. At the bottom of the scale or rope is the worst scoring fighter. She has a 0. The scale or rope is called a range. It is divided into hundreths or percentiles and your score is how high or close you came to getting that hundred. A second place fighter with a 95 waged a much better fight than a second place fighter with a 20. The same is true for fighters in third, fourth, fifth place etc... A competition where half the fighters had percentile range scores above fifty would indicate that we are a community of active and competitive fighters, and we can all give ourselves pats on the back.

OK, now how do we figure percentile range scores? First the rope or scale is
called a range. The first place fighter's score is a maximum, and the
last place fighter's score is called a minimum.
Let's say that in a
group of fighters the mimimum score is two and
the maximum is ten. The range is the maximum minus
the minimum.

10-2= the range or 8.

To compute a percentile range score for each fighter subtract the
minimum from that fighter's raw vot total. ZOID CITY always makes raw
vote totals available in real time so you can get your percentile range
score (unofficially) whenever you want it. Let's say a fighter has a
score of 9.

First she subtracts the minimum from her score.

9-8=7

Next the fighter divides this number (her raw vote total-minimum or 7) by
the range (8). She should get a fraction or decimal and unless she has a first
place score, the figure will always be less than one (1). Let's see it in
action:

7 (score-minimum)/8 (range)= .875

Since fractions and decimals make a lot of people uncomfortable, the figher
than can multiply this figure (.875) by 100 to get a whole number.

br>
.875 ((sore-minimum/range) x 100= 87.5 or 88 since we usually round up.
The fighter has an 88 which is a fairly respectable score.

Of course you do not have to score the entire field of fighters or even yourself by hand, though it is really not that difficult. ZOID CITY always makes its scorinng spreadsheet template available at paralink The user name is zc2zc3 the account is zc2zc3 and the password is "public" without the quotes. The spreadsheet is called minrange.xls and it is in an old version of Excel. With it, you can score along at home. Yes, because numbers are your friend any one can score.

Finally, under percentile range scoring, any fighter with a percentile range score above ninty (90) at the end of the week receives the coveted pencil, the mark of a winner, at ZOID. This is true regardless of whether we handicap.

The advanatages of percentile-range scoring are that it scores fighters based on the performance of the whole field rather than simply first, second, and third place. There can be multiple winners and the elegant system allows for performance based handicapping.

Back to the top of the page.

Back to the ZOID Documentation.

Back to the Main ZOID Page.

**Mean-standaard deviation scoring has
never been used at ZOID,** though it could supplement the
system we currently have. It would work
extremely well in some ways with very large groups of fighters.
The theoretical cut off for switching to mean-standard deviation scoring is thirty-six
or more fighters in a heat, though in practice it will be somewhat
higher, depend upon the score ranges, numbers of
ballots we obtain, and group consensus. Mean-standard deviation
scoring is an excruciatingly fair system because it scores
your site's against performance by comparing it against the field
average or mean rather than that of the top fighter.

Mean-standard deviation scoring is also called "curving from the middle," and it is used in real life for students' exams in large university courses in the United States. It is considered the most humane approach when there must be winners and losers. Also mean-standard deviation scoring works exceptionally well with large groups. The larger the group of fighters becomes (even into the hundreds or thousands) the more accurate mean-standard deviation scoring becomes.

Here is how it works. Let us start with a field
of five fighters (In real life the field would be much larger).

Fighter A -- 2votes |

Fighter B -- 4votes |

Fighter C -- 6votes |

Fighter D -- 8votes |

Fighter E -- 10votes |

First let's figure the mean. The mean is the weighted average.
It is the total of all scores added up divided by the number of fighters.

2+4+6+8+10= 30 this is the total.

30/5 = 6 This is the mean or average.

Next the scorer figures the standard deviation. The standard deviation
is the variation or spread of scores about the mean. It is the
average distance from the mean for fighters' scores. Some fields have
very large standard deviations if the scores vary very much and some
fields where fighters have very similar scores have very small standard
deviations.
If scores are spread out, the standard deviation is large.
If scores are clustered tightly together, the standard deviation is
small.

To figure standard deviation. The scorer figures out how
much each site's score differs from the mean. Note some of
these numbers are going to be negative.

Fighter A – -4 |

Fighter B – -2 |

Fighter C – 0 |

Fighter D +2 |

Fighter E +4 |

Notice that some of these numbers are less than zero or negative. In
order to make these numbers positive (the standard deviation
is always a positive number), the scorer needs to square
these values. That means she multiplies each number times iteslf.

Fighter A – +16 |

Fighter B - +4 |

Fighter C - 0 |

Fighter D – +4 |

Fighter E - +16pnts |

Now she adds these all together. Remember she is taking an
average of the spread.

16+4+0+16+4 = 40.

Of course this is a high number because it is
a sum of numbers that have been squared, and clearly no
score approaches 40 so the scorer has to take the square
root of this total to get the standard deviation. Calculators
can give ou square roots (There is one built right inside
most computers.), so can tables, and you can even estimate them.

The square root of 40 is 6.32

Now in mean-standard deviation scoring a fighter's
score is based on the number of standard deviations above or
below the mean number of votes for the field. **To figure this score,
the scorer subtracts the mean from the fighter's score and divides
by the standard deviation.** Let's take a look at how this works.

Fighter | raw vote | difference from mean | score |

Fighter A | 2 votes | -4 | -4/6.32 or -.66 |

Fighter B | 4 votes | -2 | -2/6.32 or -.33 |

Fighter C | 6 votes | 0 | 0/6.32 or 0 |

Fighter D | 8 votes | +2 | +2/6.32 or +.33 |

Fighter E | 10 votes | +4 | +4/6.32 or +.66 |

Notice that Notice that scores obtained undner mean-standard deviation scoring tend to be low. Scores over +2 and below –2 are extremely rare. Also half of all fighters walk away with negative scores, meaning scores below zero. This means a change to mean-standard deviation scoring would be jarring. For this reason, there will be no change to mean-standard deviation scoring without the consensus of the active membership. That will mean you.

Under mean-standard deviation scoring, the winner has the highest mean-standard deviation score. This score will rarely be above a three. There is no rounding off, as decimal point differences count. Remember a fighter with a +3 mean standard-deviation score is doing quite well though such a high score sometimes indicates that the competition is not fair.

Back to the top of the page.

Back to the ZOID Documentation.

Back to the Main ZOID Page.

One of the big advantages of statistical scoring is that it provides a
wealth of data that lets any one gague and let's the scorer reamedy
the fairness of our competition. Numbers do not lie. With
percentile range scoring, common sense should
tell anyone that a competition that is fair is one in which several fighters out of a field
of ten to fifteen do reasonably well, and only a few fighter have percentile-range
scores near zero. A competition where most scores huddle in a ball at
the bottom of the range is unfair. Put another way, at leat two fighters
should have percentile-range scores of fifty or better. If this is **NOT**
happening, it is time to handicap the competition.

If ZOID used any form of mean-standard deviation scoring, the mean and standard deviation would act as the measure of fariness. A fair competition is one where many fighters campaign and get results from their work. The mean should therefore be high and since scores of these hard working evenly matched fighters will cluster together, the standard deviation will be low.

Back to the top of the page.

Back to the ZOID Documentation.

Back to the Main ZOID Page.

Occasionally a gross mismatch among sites occurs. Some fighters have been exchanging votes for months. Some fighters have a base of outside support they can draw upon that is just much larger than that of others. They may be running a large mailing list from their site or a popular interactive game or web board. By contrast other fighters share a computer with their parents, hold down full and part time jobs, have family responsibilities or are on mailing lists where consistent daily begging is not allowed. Handicapping prevents a fighter with stupendous scores from knocking others to the bottom of the range. Here is how it works:

Under percentile-range scoring, a fighter with a score fifty votes more than, or double the next closest competitor's (whichever is more) still keeps her triple digit (100) score, but the scorer recalculates the remaining fighters' scores WITHOUT the high scoring fighter's vote total. This means that there is a new spread sheet that allows for this double calculation. Those other fighters scores are based on the adjusted figure. All fighters' scores are marked as handicapped. And handicapped scores are considered abbsolutely as valid as nonhandicapped scores. And yes, two or more fighters receive 100's and pencils. It is often said that " there is a race for the second pencil." Handicapping prevents fighters from being knocked out on day one.

Under mean-standard deviation, a fighter with a score of +3
or greater wins, but once again the scorer recalculates,
the mean, standard deviation, and scores without the high-scoring fighter's
vote total. **Fighters adjusted scores are the ones used.**

A binodal or two tiered score distribution happens when one group of fighters does much better than another. If you graph this you see two humps like the back of a cammel. Each hump represents a group of fighters whose scores cluster about two different numbers. If this occurs with some frequency, the House Managers, and Trustees, with consensus of the community, will split the upper levels of competition into two tiers like major and minor leagues or A and B swim teams, in order to give everyone a shot at winning. Again scores in either division will be considered equally valid, and all scores will be noted as split.

Back to the top of the page.

Back to the ZOID Documentation.

Back to the Main ZOID Page.